Fluorescent Probes for Selective Protein Labeling in Lysosomes: A Case of α-Galactosidase A

FASEB J. 2017 Dec;31(12):5258-5267. doi: 10.1096/fj.201700058RRRR. Epub 2017 Aug 15.


Fluorescence-based live-cell imaging (LCI) of lysosomal glycosidases is often hampered by unfavorable pH and redox conditions that reduce fluorescence output. Moreover, most lysosomal glycosidases are low-mass soluble proteins that do not allow for bulky fluorescent protein fusions. We selected α-galactosidase A (GALA) as a model lysosomal glycosidase involved in Anderson-Fabry disease (AFD) for the current LCI approach. Examination of the subcellular localization of AFD-causing mutants can reveal the mechanism underlying cellular trafficking deficits. To minimize genetic GALA modification, we employed a biarsenical labeling protocol with tetracysteine (TC-tag) detection. We tested the efficiency of halogen-substituted biarsenical probes to interact with C-terminally TC-tagged GALA peptide at pH 4.5 in vitro and identified F2FlAsH-EDT2 as a superior detection reagent for GALA. This probe provides improved signal/noise ratio in labeled COS-7 cells transiently expressing TC-tagged GALA. The investigated fluorescence-based LCI technology of TC-tagged lysosomal protein using an improved biarsenical probe can be used to identify novel compounds that promote proper trafficking of mutant GALA to lysosomal compartments and rescue the mutant phenotype.