CentoLCV ### CentoLCV - Our versatile platform for detecting chromosomal imbalances As part of our commitment to helping end the diagnostic odyssey of rare disease patients, CENTOGENE has developed CentoLCV – a comprehensive Copy Number Variation (CNV) analysis using genome-wide Next Generation Sequencing (NGS). CNVs, which represent a large component of structural variations in the human genome, consist of gains or losses of genomic regions ranging from a few thousand to several million DNA bases pairs in size. ¹⁻² CNVs are involved with a wide variety of genetic disorders and have a significant impact on human health and disease. ²⁻⁴ NGS, and more specifically WGS, are powerful tools to detect CNVs. ^{6,7} Our new CNV detection platform has a higher genome coverage and resolution than conventional tests using karyotyping or microarrays⁵⁻⁷ and can detect large CNVs, such as full and partial chromosomal aneuploidies, microdeletions/microduplications, and partial or complete single-gene related CNVs of clinical relevance. CentoLCV ultimately allows for a more accurate molecular diagnosis, leading to better, more informed outcomes, and potentially also reduced reproductive risks. #### Who should consider CentoLCV? Geneticists, neonatologists, pediatricians, and neurologists providing diagnoses and treatments for patients matching any of the following criteria: - Suspected chromosomal imbalances (e.g., Down syndrome and Turner syndrome), including microdeletion/microduplication syndromes (e.g., DiGeorge syndrome and Williams syndrome) - Multiple congenital anomalies, including global developmental delay (e.g., Phelan-McDermid syndrome), intellectual disability (e.g., 17q21.31 microdeletion in learning disability), and many more - Autism or autism spectrum disorders (e.g., 16p11.2 microdeletion in autism) #### **Key features of CentoLCV** CentoLCV is based on high throughput genome sequencing technology and covers the complete genome at the sequence level. It confidently detects CNVs with high sensitivity and resolution, providing a fast and precise diagnostic test.⁵ | CATEGORY | FEATURES | | |---------------------------------|---|--| | COVERAGE | Full genome coverage (>20,000 genes) with a mean depth ≥3x Coding (exonic) and non-coding regions (intronic, regulatory regions and splice sites) | | | VARIANTS | Whole and partial chromosomal aneuploidies Unbalanced translocations Microdeletions and microduplications Deletions and duplications within single genes | | | DETECTION RANGE AND SENSITIVITY | ≥50 kb, and lower for homo/hemizygous deletions 4x higher sensitivity than microarray technologies | | | OPTIONS | Order individually or as add-on to CentoXome® | | | TAT | • ≤15 business days | | | MATERIAL | • 1 CentoCard®* | | ^{*}Please check our web page for further options (https://www.centogene.com/diagnostics/how-to-order.html) ### What disorders are targeted by CentoLCV? CNVs are involved in a wide variety of disorders, ranging from pediatric disorders and congenital birth defects to adult-onset neuropsychiatric and neurodegenerative disorders.²⁻⁴ ## Why is CentoLCV a superior alternative to conventional karyotyping and microarrays? - It provides robust detection of CNV changes throughout the entire genome with higher resolution and precision than conventional karyotyping and microarrays5-7 - Many hereditary disorders are also caused by novel aberrations, which may be difficult to detect by conventional karyotyping and microarrays5-7 - · It exceeds the diagnostic yield of conventional karyotyping and microarrays5-8 | Features | CentoLCV | Microarrays* | Karyotyping | |---|---------------------------------|---|---| | RESOLUTION
RANGE ⁵⁻⁷ | Exon/gene- to chromosome level | Sub- to chromosome level | Chromosome level | | COVERAGE AND
TARGET RANGE ⁵⁻⁷ | Unbiased across
whole genome | Biased by probe
spacing and density
across the genome | Narrowed to large
chromosome
changes across the
genome | | DIAGNOSTIC
YIELD ⁵⁻⁸ | >15% | 10-15% | 3-7% | ^{*}Details depends on the platform used #### **REFERENCES** ¹ Freeman et al. 2006, PMID: 16809666 ² Zhang et al. 2009, PMID: 19715442 ³ Shaikh 2017, PMID: 29732242 41 ew et al. 2018, PMID: 30258274 ⁵ CENTOGENE data on file ⁶Zhou et al. 2018, PMID: 30061371 ⁷ Dong et al. 2016, PMID: 26820068 8 Miller et al. 2010, PMID: 20466091